个人信息Personal Information
教授
博士生导师
硕士生导师
性别:男
毕业院校:大连理工大学
学位:博士
所在单位:计算机科学与技术学院
办公地点:大连理工大学创新园大厦8-A0824
联系方式:18641168567
电子邮箱:gztan@dlut.edu.cn
Multiagent Learning of Coordination in Loosely Coupled Multiagent Systems
点击次数:
论文类型:期刊论文
发表时间:2015-12-01
发表刊物:IEEE TRANSACTIONS ON CYBERNETICS
收录刊物:SCIE、EI、Scopus
卷号:45
期号:12
页面范围:2853-2867
ISSN号:2168-2267
关键字:Agent independence; coordination; multiagent learning (MAL); reinforcement learning (RL); sparse interactions
摘要:Multiagent learning (MAL) is a promising technique for agents to learn efficient coordinated behaviors in multiagent systems (MASs). In MAL, concurrent multiple distributed learning processes can make the learning environment nonstationary for each individual learner. Developing an efficient learning approach to coordinate agents' behaviors in this dynamic environment is a difficult problem, especially when agents do not know the domain structure and have only local observability of the environment. In this paper, a coordinated MAL approach is proposed to enable agents to learn efficient coordinated behaviors by exploiting agent independence in loosely coupled MASs. The main feature of the proposed approach is to explicitly quantify and dynamically adapt agent independence during learning so that agents can make a trade-off between a single-agent learning process and a coordinated learning process for an efficient decision making. The proposed approach is employed to solve two-robot navigation problems in different scales of domains. Experimental results show that agents using the proposed approach can learn to act in concert or independently in different areas of the environment, which results in great computational savings and near optimal performance.