叶宏飞

个人信息Personal Information

教授

博士生导师

硕士生导师

主要任职:力学与航空航天学院副院长

性别:男

毕业院校:大连理工大学

学位:博士

所在单位:力学与航空航天学院

学科:工程力学. 固体力学. 计算力学. 生物与纳米力学

办公地点:综合实验1号楼506室

电子邮箱:yehf@dlut.edu.cn

扫描关注

论文成果

当前位置: 中文主页 >> 科学研究 >> 论文成果

Crystallization behaviors and mechanical properties of carbon nanotube encapsulated copper nanowires

点击次数:

论文类型:期刊论文

发表时间:2018-02-15

发表刊物:COMPUTATIONAL MATERIALS SCIENCE

收录刊物:SCIE、EI

卷号:143

页面范围:350-359

ISSN号:0927-0256

关键字:Molecular dynamics simulation; Carbon nanotube encapsulated metal nanowire; Crystallization behavior; Tensile property

摘要:Based on the molecular dynamics (MD) simulation, the crystallization behaviors and tensile mechanical properties of carbon nanotube (CNT) encapsulated copper nanowires are investigated in this paper. The influences of the cooling rate, the wall number of CNT and the cross-sectional diameter are considered. It is found that during the crystallization process the CNT acts as a template to induce the nucleation of copper grains from the surface and the template effect is mainly dominated by the innermost layer of CNT via the van der Waals interaction. CNT encapsulated copper nanowire can be formed after the cooling process and the internal copper nanowire is composed of several circumferential fan-shaped polycrystalline grains separated mostly by radial grain boundaries. The crystallinity increases with the increase of the diameter and the decrease of the cooling rate. Tensile tests show that the strength of the composite structure of the CNT encapsulated copper nanowire is much larger than the corresponding pristine copper nanowire. Moreover, it is found that the strength of the composite structure increases with the decrease of the diameter and the CNT plays a dominant role in strengthening the materials. These findings will shed light on the fabrication and practical application of carbon nanotube encapsulated metal nanowires. (C) 2017 Elsevier B.V. All rights reserved.