卢湖川

个人信息Personal Information

教授

博士生导师

硕士生导师

主要任职:未来技术学院/人工智能学院执行院长

性别:男

毕业院校:大连理工大学

学位:博士

所在单位:信息与通信工程学院

学科:信号与信息处理

办公地点:大连理工大学未来技术学院/人工智能学院218

联系方式:****

电子邮箱:lhchuan@dlut.edu.cn

扫描关注

论文成果

当前位置: 中文主页 >> 科学研究 >> 论文成果

Saliency Detection via Dense and Sparse Reconstruction

点击次数:

论文类型:会议论文

发表时间:2013-12-01

收录刊物:EI、CPCI-S、SCIE、Scopus

页面范围:2976-2983

摘要:In this paper, we propose a visual saliency detection algorithm from the perspective of reconstruction errors. The image boundaries are first extracted via superpixels as likely cues for background templates, from which dense and sparse appearance models are constructed. For each image region, we first compute dense and sparse reconstruction errors. Second, the reconstruction errors are propagated based on the contexts obtained from K-means clustering. Third, pixel-level saliency is computed by an integration of multi-scale reconstruction errors and refined by an object-biased Gaussian model. We apply the Bayes formula to integrate saliency measures based on dense and sparse reconstruction errors. Experimental results show that the proposed algorithm performs favorably against seventeen state-of-the-art methods in terms of precision and recall. In addition, the proposed algorithm is demonstrated to be more effective in highlighting salient objects uniformly and robust to background noise.