个人信息Personal Information
教授
博士生导师
硕士生导师
主要任职:未来技术学院/人工智能学院执行院长
性别:男
毕业院校:大连理工大学
学位:博士
所在单位:信息与通信工程学院
学科:信号与信息处理
办公地点:大连理工大学未来技术学院/人工智能学院218
联系方式:****
电子邮箱:lhchuan@dlut.edu.cn
INCREMENTAL ORTHOGONAL PROJECTIVE NON-NEGATIVE MATRIX FACTORIZATION AND ITS APPLICATIONS
点击次数:
论文类型:会议论文
发表时间:2011-09-11
收录刊物:EI、CPCI-S、Scopus
页面范围:2077-2080
关键字:NMF; IOPNMF; incremental learning; part-based representations; visual tracking
摘要:In this paper, we propose an incremental orthogonal projective non-negative matrix factorization algorithm (IOPNMF), which aims to learn a parts-based subspace that reveals dynamic data streams. There exist two main contributions. Firstly, our proposed algorithm can learn parts-based representations in an online fashion. Secondly, by using projection and orthogonality constrains, our IOPNMF algorithm can guarantee to learn a linear parts-based subspace. To demonstrate the effectiveness of our method, we conduct two kinds of experiments, incremental learning parts-based components on facial database and visual tracking on several challenging video clips. The experimental results show that our IOPNMF algorithm learns parts-based representations successfully.