个人信息Personal Information
教授
博士生导师
硕士生导师
主要任职:未来技术学院/人工智能学院执行院长
性别:男
毕业院校:大连理工大学
学位:博士
所在单位:信息与通信工程学院
学科:信号与信息处理
办公地点:大连理工大学未来技术学院/人工智能学院218
联系方式:****
电子邮箱:lhchuan@dlut.edu.cn
Constrained Superpixel Tracking
点击次数:
论文类型:期刊论文
发表时间:2018-03-01
发表刊物:IEEE TRANSACTIONS ON CYBERNETICS
收录刊物:SCIE、EI、Scopus
卷号:48
期号:3
页面范围:1030-1041
ISSN号:2168-2267
关键字:Smoothness constraints; superpixel; tracking; transduction
摘要:In this paper, we propose a constrained graph labeling algorithm for visual tracking where nodes denote superpixels and edges encode the underlying spatial, temporal, and appearance fitness constraints. First, the spatial smoothness constraint, based on a transductive learning method, is enforced to leverage the latent manifold structure in feature space by investigating unlabeled superpixels in the current frame. Second, the appearance fitness constraint, which measures the probability of a superpixel being contained in the target region, is developed to incrementally induce a long-term appearance model. Third, the temporal smoothness constraint is proposed to construct a short-term appearance model of the target, which handles the drastic appearance change between consecutive frames. All these three constraints are incorporated in the proposed graph labeling algorithm such that induction and transduction, short-and long-term appearance models are combined, respectively. The foreground regions inferred by the proposed graph labeling method are used to guide the tracking process. Tracking results, in turn, facilitate more accurate online update by filtering out potential contaminated training samples. Both quantitative and qualitative evaluations on challenging tracking data sets show that the proposed constrained tracking algorithm performs favorably against the state-of-the-art methods.