个人信息Personal Information
教授
博士生导师
硕士生导师
主要任职:未来技术学院/人工智能学院执行院长
性别:男
毕业院校:大连理工大学
学位:博士
所在单位:信息与通信工程学院
学科:信号与信息处理
办公地点:大连理工大学未来技术学院/人工智能学院218
联系方式:****
电子邮箱:lhchuan@dlut.edu.cn
Gender recognition using adaboosted feature
点击次数:
论文类型:会议论文
发表时间:2007-08-24
收录刊物:EI、CPCI-S、Scopus
卷号:2
页面范围:646-+
摘要:In this paper, a novel approach for gender recognition combining the ellipse face images, Gabor filters, Adaboost learning and SVM classifier is proposed. Face representation based on Harr-like feature, Gabor feature or ICA is an effective method to extract facial appearance information. So we compare these three kinds of features selected by adaboost method using FERET database. In the first experiment, several different preprocessing methods (face detector warp face images and ellipse face images) have been compared, meanwhile comparing different feature extraction methods (Gabor wavelets, Haar-like wavelets, PCA, ICA). The experimental results show that our proposed approach (combination of ellipse face images, Gabor wavelets and Ada+SVM classifer) achieves better performance. The second experiment is tested on PCA and ICA feature extraction method with different explanation. It is shown that ICA is much steadier than PCA method when the explanation changed.