卢湖川

个人信息Personal Information

教授

博士生导师

硕士生导师

主要任职:未来技术学院/人工智能学院执行院长

性别:男

毕业院校:大连理工大学

学位:博士

所在单位:信息与通信工程学院

学科:信号与信息处理

办公地点:大连理工大学未来技术学院/人工智能学院218

联系方式:****

电子邮箱:lhchuan@dlut.edu.cn

扫描关注

论文成果

当前位置: 中文主页 >> 科学研究 >> 论文成果

A Stagewise Refinement Model for Detecting Salient Objects in Images

点击次数:

论文类型:会议论文

发表时间:2017-01-01

收录刊物:SCIE、EI、CPCI-S、Scopus

卷号:2017-October

页面范围:4039-4048

摘要:Deep convolutional neural networks (CNNs) have been successfully applied to a wide variety of problems in computer vision, including salient object detection. To detect and segment salient objects accurately, it is necessary to extract and combine high-level semantic features with low-level fine details simultaneously. This happens to be a challenge for CNNs as repeated subsampling operations such as pooling and convolution lead to a significant decrease in the initial image resolution, which results in loss of spatial details and finer structures. To remedy this problem, here we propose to augment feedforward neural networks with a novel pyramid pooling module and a multi-stage refinement mechanism for saliency detection. First, our deep feedward net is used to generate a coarse prediction map with much detailed structures lost. Then, refinement nets are integrated with local context information to refine the preceding saliency maps generated in the master branch in a stagewise manner. Further, a pyramid pooling module is applied for different-region-based global context aggregation. Empirical evaluations over six benchmark datasets show that our proposed method compares favorably against the state-of-the-art approaches.