卢湖川

个人信息Personal Information

教授

博士生导师

硕士生导师

主要任职:未来技术学院/人工智能学院执行院长

性别:男

毕业院校:大连理工大学

学位:博士

所在单位:信息与通信工程学院

学科:信号与信息处理

办公地点:大连理工大学未来技术学院/人工智能学院218

联系方式:****

电子邮箱:lhchuan@dlut.edu.cn

扫描关注

论文成果

当前位置: 中文主页 >> 科学研究 >> 论文成果

Salient object detection via point-to-set metric learning

点击次数:

论文类型:期刊论文

发表时间:2016-12-01

发表刊物:PATTERN RECOGNITION LETTERS

收录刊物:SCIE、EI、Scopus

卷号:84

页面范围:85-90

ISSN号:0167-8655

关键字:Salient object detection; Metric learning; Point-to-set classification

摘要:Distance metric is an essential step of salient object detection, in which the pairwise distances are often used to distinguish salient image elements (pixels and regions) from background elements. Instead of using the point-to-point distance metrics which possibly implicitly take into account the context information around data points, we learn the point-to-set metric to explicitly compute the distances of single points to sets of correlated points and cast saliency estimation as the problem of point-to-set classification. First, we generate a series of bounding box proposals and region proposals for an input image (i. e., some pre-detected regions which possibly include object instances), and exploit them to compute a recall-preference saliency map and a precision-preference one, based on which the background and foreground seed regions are respectively determined. Next, we collect positive and negative samples (include point samples and set samples) to learn the point-to-set distance metric, and employ it to classify the image elements into foreground and background classes. Last, we update the training samples and refine the classification result. The proposed approach is evaluated on three large publicly available datasets with pixel accurate annotations. Extensive experiments clearly demonstrate the superiority of the proposed approach over the state-of-the-art approaches. (C) 2016 Elsevier B. V. All rights reserved.