个人信息Personal Information
教授
博士生导师
硕士生导师
主要任职:未来技术学院/人工智能学院执行院长
性别:男
毕业院校:大连理工大学
学位:博士
所在单位:信息与通信工程学院
学科:信号与信息处理
办公地点:大连理工大学未来技术学院/人工智能学院218
联系方式:****
电子邮箱:lhchuan@dlut.edu.cn
Multi-scale Pyramid Pooling Network for salient object detection
点击次数:
论文类型:期刊论文
发表时间:2019-03-14
发表刊物:NEUROCOMPUTING
收录刊物:SCIE、Scopus
卷号:333
页面范围:211-220
ISSN号:0925-2312
关键字:Saliency detection; Multi-scale Pyramid Pooling Network (MPPNet); Convolutional neural networks (CNNs)
摘要:In recent years, visual saliency has witnessed tremendous progress through using deep convolutional neural networks (CNNs). For effective salient object detection, contextual information has been widely employed since the global context can tell different objects apart while the local context can distinguish salient ones from the background. Inspired by this, in this paper we propose a novel Multi-scale Pyramid Pooling Network (MPPNet) by exploiting global and local context in a unified way. This is achieved by incorporating hierarchical local information and global pyramid pooling representation. Particularly, the integration of multi-scale pyramid pooling proves its capacity to produce high-quality prediction map through the use of multiple pooling variables. Quantitative and qualitative experiments demonstrate the effectiveness of the proposed framework. Our method can significantly improve the performance based on four popular benchmark datasets. (C) 2018 Elsevier B.V. All rights reserved.