卢湖川

个人信息Personal Information

教授

博士生导师

硕士生导师

主要任职:未来技术学院/人工智能学院执行院长

性别:男

毕业院校:大连理工大学

学位:博士

所在单位:信息与通信工程学院

学科:信号与信息处理

办公地点:大连理工大学未来技术学院/人工智能学院218

联系方式:****

电子邮箱:lhchuan@dlut.edu.cn

扫描关注

论文成果

当前位置: 中文主页 >> 科学研究 >> 论文成果

Dense and Sparse Reconstruction Error Based Saliency Descriptor

点击次数:

论文类型:期刊论文

发表时间:2016-04-01

发表刊物:IEEE TRANSACTIONS ON IMAGE PROCESSING

收录刊物:SCIE、EI、ESI高被引论文

卷号:25

期号:4

页面范围:1592-1603

ISSN号:1057-7149

关键字:Saliency detection; dense/sparse reconstruction error; sparse representation; context-based propagation; region compactness; Bayesian integration

摘要:In this paper, we propose a visual saliency detection algorithm from the perspective of reconstruction error. The image boundaries are first extracted via superpixels as likely cues for background templates, from which dense and sparse appearance models are constructed. First, we compute dense and sparse reconstruction errors on the background templates for each image region. Second, the reconstruction errors are propagated based on the contexts obtained from K-means clustering. Third, the pixel-level reconstruction error is computed by the integration of multi-scale reconstruction errors. Both the pixel-level dense and sparse reconstruction errors are then weighted by image compactness, which could more accurately detect saliency. In addition, we introduce a novel Bayesian integration method to combine saliency maps, which is applied to integrate the two saliency measures based on dense and sparse reconstruction errors. Experimental results show that the proposed algorithm performs favorably against 24 state-of-the-art methods in terms of precision, recall, and F-measure on three public standard salient object detection databases.