卢湖川

个人信息Personal Information

教授

博士生导师

硕士生导师

主要任职:未来技术学院/人工智能学院执行院长

性别:男

毕业院校:大连理工大学

学位:博士

所在单位:信息与通信工程学院

学科:信号与信息处理

办公地点:大连理工大学未来技术学院/人工智能学院218

联系方式:****

电子邮箱:lhchuan@dlut.edu.cn

扫描关注

论文成果

当前位置: 中文主页 >> 科学研究 >> 论文成果

Sparse Hashing Tracking

点击次数:

论文类型:期刊论文

发表时间:2016-02-01

发表刊物:IEEE TRANSACTIONS ON IMAGE PROCESSING

收录刊物:SCIE、EI、Scopus

卷号:25

期号:2

页面范围:840-849

ISSN号:1057-7149

关键字:Object tracking; hash functions; feature selection; part-based

摘要:In this paper, we propose a novel tracking framework based on a sparse and discriminative hashing method. Different from the previous work, we treat object tracking as an approximate nearest neighbor searching process in a binary space. Using the hash functions, the target templates and the candidates can be projected into the Hamming space, facilitating the distance calculation and tracking efficiency. First, we integrate both the inter-class and intra-class information to train multiple hash functions for better classification, while most classifiers in previous tracking methods usually neglect the interclass correlation, which may cause the inaccuracy. Then, we introduce sparsity into the hash coefficient vectors for dynamic feature selection, which is crucial to select the discriminative and stable features to adapt to visual variations during the tracking process. Extensive experiments on various challenging sequences show that the proposed algorithm performs favorably against the state-of-the-art methods.