个人信息Personal Information
教授
博士生导师
硕士生导师
主要任职:未来技术学院/人工智能学院执行院长
性别:男
毕业院校:大连理工大学
学位:博士
所在单位:信息与通信工程学院
学科:信号与信息处理
办公地点:大连理工大学未来技术学院/人工智能学院218
联系方式:****
电子邮箱:lhchuan@dlut.edu.cn
Inverse Sparse Tracker With a Locally Weighted Distance Metric
点击次数:
论文类型:期刊论文
发表时间:2015-09-01
发表刊物:IEEE TRANSACTIONS ON IMAGE PROCESSING
收录刊物:SCIE、EI、Scopus
卷号:24
期号:9
页面范围:2646-2657
ISSN号:1057-7149
关键字:Visual tracking; sparse representation; inverse sparse tracker; robust distance
摘要:Sparse representation has been recently extensively studied for visual tracking and generally facilitates more accurate tracking results than classic methods. In this paper, we propose a sparsity-based tracking algorithm that is featured with two components: 1) an inverse sparse representation formulation and 2) a locally weighted distance metric. In the inverse sparse representation formulation, the target template is reconstructed with particles, which enables the tracker to compute the weights of all particles by solving only one l(1) optimization problem and thereby provides a quite efficient model. This is in direct contrast to most previous sparse trackers that entail solving one optimization problem for each particle. However, we notice that this formulation with normal Euclidean distance metric is sensitive to partial noise like occlusion and illumination changes. To this end, we design a locally weighted distance metric to replace the Euclidean one. Similar ideas of using local features appear in other works, but only being supported by popular assumptions like local models could handle partial noise better than holistic models, without any solid theoretical analysis. In this paper, we attempt to explicitly explain it from a mathematical view. On that basis, we further propose a method to assign local weights by exploiting the temporal and spatial continuity. In the proposed method, appearance changes caused by partial occlusion and shape deformation are carefully considered, thereby facilitating accurate similarity measurement and model update. The experimental validation is conducted from two aspects: 1) self validation on key components and 2) comparison with other state-of-the-art algorithms. Results over 15 challenging sequences show that the proposed tracking algorithm performs favorably against the existing sparsity-based trackers and the other state-of-the-art methods.