个人信息Personal Information
教授
博士生导师
硕士生导师
主要任职:未来技术学院/人工智能学院执行院长
性别:男
毕业院校:大连理工大学
学位:博士
所在单位:信息与通信工程学院
学科:信号与信息处理
办公地点:大连理工大学未来技术学院/人工智能学院218
联系方式:****
电子邮箱:lhchuan@dlut.edu.cn
Superpixel level object recognition under local learning framework
点击次数:
论文类型:期刊论文
发表时间:2013-11-23
发表刊物:NEUROCOMPUTING
收录刊物:EI、SCIE、Scopus
卷号:120
期号:,SI
页面范围:203-213
ISSN号:0925-2312
关键字:Object recognition; Superpixels; Local learning; Neighbor integration
摘要:In this paper, we propose a simple yet effective method for superpixel level object recognition on the bag-of-feature framework. Instead of using general classifiers for the superpixel categorization, we introduce local learning classifiers into our framework, which aims to turn a highly non-linear classification problem into multiple local linear problems within different subsets of the database, so as to tackle the intraclass variation problem brought by superpixel based representations of objects. In addition, context information is used to make better performance by combining each superpixel with its appearance-based superpixel neighbors within a certain neighborhood distance from superpixel mean color map. At last, we utilize superpixel based Graph Cuts algorithm to segment the objects from background image. We test the proposed method on Graz-02 dataset, and get results comparable to the state-of-the-art. (c) 2013 Elsevier B.V. All rights reserved.