卢湖川

个人信息Personal Information

教授

博士生导师

硕士生导师

主要任职:未来技术学院/人工智能学院执行院长

性别:男

毕业院校:大连理工大学

学位:博士

所在单位:信息与通信工程学院

学科:信号与信息处理

办公地点:大连理工大学未来技术学院/人工智能学院218

联系方式:****

电子邮箱:lhchuan@dlut.edu.cn

扫描关注

论文成果

当前位置: 中文主页 >> 科学研究 >> 论文成果

Bayesian Saliency via Low and Mid Level Cues

点击次数:

论文类型:期刊论文

发表时间:2013-05-01

发表刊物:IEEE TRANSACTIONS ON IMAGE PROCESSING

收录刊物:SCIE、PubMed、ESI高被引论文

卷号:22

期号:5

页面范围:1689-1698

ISSN号:1057-7149

关键字:Laplacian sparse subspace clustering; saliency map; visual saliency

摘要:Visual saliency detection is a challenging problem in computer vision, but one of great importance and numerous applications. In this paper, we propose a novel model for bottom-up saliency within the Bayesian framework by exploiting low and mid level cues. In contrast to most existing methods that operate directly on low level cues, we propose an algorithm in which a coarse saliency region is first obtained via a convex hull of interest points. We also analyze the saliency information with mid level visual cues via superpixels. We present a Laplacian sparse subspace clustering method to group superpixels with local features, and analyze the results with respect to the coarse saliency region to compute the prior saliency map. We use the low level visual cues based on the convex hull to compute the observation likelihood, thereby facilitating inference of Bayesian saliency at each pixel. Extensive experiments on a large data set show that our Bayesian saliency model performs favorably against the state-of-the-art algorithms.