个人信息Personal Information
教授
博士生导师
硕士生导师
主要任职:未来技术学院/人工智能学院执行院长
性别:男
毕业院校:大连理工大学
学位:博士
所在单位:信息与通信工程学院
学科:信号与信息处理
办公地点:大连理工大学未来技术学院/人工智能学院218
联系方式:****
电子邮箱:lhchuan@dlut.edu.cn
AN EFFECTIVE FRAMEWORK FOR AUTOMATIC SEGMENTATION OF HARD EXUDATES IN FUNDUS IMAGES
点击次数:
论文类型:期刊论文
发表时间:2013-01-01
发表刊物:JOURNAL OF CIRCUITS SYSTEMS AND COMPUTERS
收录刊物:SCIE、EI
卷号:22
期号:1
ISSN号:0218-1266
关键字:Exudates; diabetic retinopathy; boosted soft segmentation; double-ring filter
摘要:In this paper, we propose an effective framework to automatically segment hard exudates (HEs) in fundus images. Our framework is based on a coarse-to-fine strategy, as we first get a coarse result allowed of some negative samples, then eliminate the negative samples step by step. In our framework, we make the most of the multi-channel information by employing a boosted soft segmentation algorithm. Additionally, we develop a multi-scale background subtraction method to obtain the coarse segmentation result. After subtracting the optical disc (OD) region from the coarse result, the HEs are extracted by a SVM classifier. The main contributions of this paper are: (1) propose an efficient and robust framework for automatic HEs segmentation; (2) present a boosted soft segmentation algorithm to combine multi-channel information; (3) employ a double ring filter to segment and adjust the OD region. We perform our experiments on the pubic DIARETDB1 dateset, which consists of 89 fundus images. The performance of our algorithm is assessed on both lesion-based criterion and image-based criterion. Our experimental results show that the proposed algorithm is very effective and robust.