个人信息Personal Information
教授
博士生导师
硕士生导师
主要任职:未来技术学院/人工智能学院执行院长
性别:男
毕业院校:大连理工大学
学位:博士
所在单位:信息与通信工程学院
学科:信号与信息处理
办公地点:大连理工大学未来技术学院/人工智能学院218
联系方式:****
电子邮箱:lhchuan@dlut.edu.cn
Object Tracking via 2DPCA and l(1)-Regularization
点击次数:
论文类型:期刊论文
发表时间:2012-11-01
发表刊物:IEEE SIGNAL PROCESSING LETTERS
收录刊物:EI、SCIE、Scopus
卷号:19
期号:11
页面范围:711-714
ISSN号:1070-9908
关键字:Appearance model; object tracking; principal component analysis (PCA); 2DPCA; l(1)-regularization
摘要:In this letter, we present a novel online object tracking algorithm by using 2DPCA and l(1)-regularization. Firstly, we introduce l(1)-regularization into the 2DPCA reconstruction, and develop an iterative algorithm to represent an object by 2DPCA bases and a sparse error matrix. Secondly, we propose a novel likelihood function that considers both the reconstruction error and the sparsity of the error matrix. This likelihood function not only handles partial occlusion effectively but also encourages the tracked object to be well-aligned. Finally, to further reduce tracking drift, we enhance the tracker updates by considering the sparsity of the error matrix. Based on our observations, a dense error matrix usually relates to partial occlusion or mis-alignment. Both qualitative and quantitative evaluations on challenging image sequences demonstrate that the proposed tracking algorithm achieves more favorable performance than several state-of-the-art methods.