个人信息Personal Information
教授
博士生导师
硕士生导师
性别:女
毕业院校:中科院理化所
学位:博士
所在单位:化工学院
学科:应用化学. 有机化学
办公地点:化工实验楼E202
联系方式:jiuyanli@dlut.edu.cn
电子邮箱:jiuyanli@dlut.edu.cn
Solution-processable iridium complexes for efficient orange-red and white organic light-emitting diodes
点击次数:
论文类型:期刊论文
发表时间:2012-01-28
发表刊物:JOURNAL OF MATERIALS CHEMISTRY
收录刊物:Scopus、SCIE、EI
卷号:22
期号:4
页面范围:1411-1417
ISSN号:0959-9428
摘要:Two homoleptic and heteroleptic cyclometalated iridium complexes containing the 2-phenylbenzothiozole derivative as the main ligand, 1 and 2, have been synthesized and characterized as efficient orange-red phosphors. Triarylamine was introduced as an important substituent into the 6-position of the benzothiazole ring to tune the photonic and electronic properties of these complexes. Different from most of small molecular iridium complexes, 1 and 2 are solution-processable and their neat films can be obtained by a spin-coating method. Furthermore, their homogeneously dispersed films in a small molecular matrix, 4,4'-N,N'-dicarbazolebiphenyl (CBP), were successfully prepared by solution method even with low doping levels. Organic light-emitting diodes (OLEDs) were fabricated by solution processing the emitting layer containing 1 and 2 as doped emitters in the CBP host. Efficient orange-red electroluminescence by using 5 wt% 2 as the dopant was realized with a maximum efficiency of 14.49 cd A(-1) (7.38 lm W-1 and 8.73%) and Commission Internationale de l'Eclairage (CIE) coordinates of (0.60, 0.40), which are among the highest luminance efficiency ever reported for partially solution-processed red and orange-red OLEDs so far. In addition, two-element white OLEDs were achieved with these orange-red phosphors and the traditional blue emitter by spin coating the emission layer. A maximum luminance efficiency of 8.97 cd A(-1) and CIE of (0.33, 0.35) were realized.