研究员 博士生导师 硕士生导师
任职 : 爆炸技术研究所所长
性别: 男
毕业院校: 中国科学技术大学
学位: 博士
所在单位: 力学与航空航天学院
学科: 工程力学
办公地点: 力学楼224室
联系方式: 041184706163 科研之友主页: https://www.scholarmate.com/P/JzE7ru
电子邮箱: robinli@dlut.edu.cn
开通时间: ..
最后更新时间: ..
点击次数:
论文类型: 期刊论文
发表时间: 2017-08-01
发表刊物: DIAMOND AND RELATED MATERIALS
收录刊物: SCIE、EI、Scopus
卷号: 77
页面范围: 79-83
ISSN号: 0925-9635
关键字: Detonation synthesis method; Nano-diamond/alumina; Boron-doped nano-diamond; Polycrystalline diamond
摘要: The nano-diamond/alumina composite was prepared by detonation with the boron-nano diamond, the aluminum isopropoxide and the RDX as raw materials in the present paper. The phase, morphology and structure of the explosive products were analyzed by X-ray diffraction, field emission scanning electron microscopy and transmission electron microscopy. The results indicated that the pressure and the temperature generated by explosion led the alumina to tightly coat the nano-diamond particles and to the composite nano-diamond/ alumina particles formation, bonding with alumina. The size of the nano-diamond particle remained unchanged at 2-10 nm and the composite particle size increased to 50-200 nm. The alumina coating layer increased antioxidant properties of nanodiamond, increased the grain size composition of the polycrystalline powder. The Boron element had certain effects onto the oxidation coating, such as the diamond particles oxidation prevention during the preparation, the graphitization losses inversion, the detonation temperature increase and the high temperature alumina composite particles proportion increase. The aluminum reduced gradually, which could lead to an increase in the density of the explosive composition, the detonation synthesis temperature to be reduced, the high-temperature alumina (such as the alpha-Al2O3) to decrease and all other alumina crystal types to increase.