大连理工大学  登录  English 
李晓杰
点赞:

研究员   博士生导师   硕士生导师

任职 : 爆炸技术研究所所长

性别: 男

毕业院校: 中国科学技术大学

学位: 博士

所在单位: 力学与航空航天学院

学科: 工程力学

办公地点: 力学楼224室

联系方式: 041184706163 科研之友主页: https://www.scholarmate.com/P/JzE7ru

电子邮箱: robinli@dlut.edu.cn

手机版

访问量:

开通时间: ..

最后更新时间: ..

当前位置: 中文主页 >> 科学研究 >> 论文成果
Molecular dynamics simulation of nanofluid's flow behaviors in the near-wall model and main flow model

点击次数:

论文类型: 期刊论文

发表时间: 2014-09-01

发表刊物: MICROFLUIDICS AND NANOFLUIDICS

收录刊物: SCIE、EI

卷号: 17

期号: 3

页面范围: 581-589

ISSN号: 1613-4982

关键字: Nanofluids; Molecular dynamics method; Flow behaviors; Two-phase flow

摘要: The flow behaviors of nanofluids were studied in this paper using molecular dynamics (MD) simulation. Two MD simulation systems that are the near-wall model and main flow model were built. The nanofluid model consisted of one copper nanoparticle and liquid argon as base liquid. For the near-wall model, the nanoparticle that was very close to the wall would not move with the main flowing due to the overlap between the solid-like layer near the wall and the adsorbed layer around the nanoparticle, but it still had rotational motion. When the nanoparticle is far away from the wall (d > 11 ), the nanoparticle not only had rotational motion, but also had translation. In the main flow model, the nanoparticle would rotate and translate besides main flowing. There was slip velocity between nanoparticles and liquid argon in both of the two simulation models. The flow behaviors of nanofluids exhibited obviously characteristics of two-phase flow. Because of the irregular motions of nanoparticles and the slip velocity between the two phases, the velocity fluctuation in nanofluids was enhanced.

辽ICP备05001357号 地址:中国·辽宁省大连市甘井子区凌工路2号 邮编:116024
版权所有:大连理工大学