location: Current position: Home >> Paper Publications

The Influence of Ar on the Synthesis of Carbon-Coated Copper Nanoparticles in Gaseous Detonation

Hits:

Indexed by:期刊论文

Date of Publication:2018-01-01

Journal:CURRENT NANOSCIENCE

Included Journals:SCIE

Volume:14

Issue:5

Page Number:360-365

ISSN No.:1573-4137

Key Words:Gas phase detonation; carbon-coated copper nanoparticles; argon gas; concentration; particle size; growth mechanism

Abstract:Background: Carbon-coated metal nanoparticle is a kind of unique nuclear-shell material that is the carbon shell filled with metal particles. It has a great promising future in the application as excellent solid lubricants additives, conducting resin, antiradiation material and so on. As a mature technology, the gas detonation method has been widely used to synthesize various nanomaterials.
   Method: Using copper acetylacetonate as a precursor to provide carbon and different concentrations of argon as a protective medium for the first time, high quality carbon-coated copper nanoparticles (Cu@C) were synthesized in hydrogen and oxygen. X-ray Diffraction (XRD), Raman spectroscopy and transmission electron microscopy (TEM) were employed to characterize the structure, phase and constituent of the Cu@C nanoparticles to investigate the influence of argon concentration on the synthesis.
   Results: The XRD pattern, Raman spectroscopy and TEM images confirm the effect of Ar on synthesizing Cu@C, especially on particle size. The minimum average size is around 13 nm, and most of the particle size distribution is in 5-10 nm range. When the argon concentration is high, the detonation process of H-2 and O-2 will be suppressed, which is not conducive to the graphitization.
   Conclusion: Argon gas has a catalytic effect on the synthesis of high-quality Cu@C, which could significantly reduce the particle size of detonation products; the grain size appears an obvious downtrend with the concentration of argon increasing, but the high concentration of Ar is disadvantageous for the graphitization of carbon shells.

Pre One:Underwater explosive compaction-sintering of tungsten-copper coating on a copper surface

Next One:Study of continuous velocity probe method for the determination of the detonation pressure of commercial explosives