Indexed by:期刊论文
Date of Publication:2019-07-01
Journal:APPLIED PHYSICS B-LASERS AND OPTICS
Included Journals:SCIE、EI
Volume:125
Issue:7
ISSN No.:0946-2171
Key Words:Image processing; Interferometry; Nonlinear filtering; Optical data processing; Speckle, Bilateral filtering; Edge preservations; Electronic speckle pattern interferometry; Filtering process; Least squares fitting; Optical interferometry; Special applications; Speckle reduction, Least squares approximations
Abstract:In optical interferometry methods, a challenging problem is how to preserve the edges of all fringes perfectly whilst reducing speckle noise effectively. Directivity is an important characteristic of optical interferometry fringes, and it plays an extremely important role in directing the filtering process. Bilateral filtering is a well-known filtering method for edge-preserving in image processing. In this paper, we propose an oriented bilateral filtering method with special application for optical interferometry fringes by incorporating a directional mask to original bilateral filtering method. We test our oriented bilateral filtering method by applying it to four computer-simulated and one experimentally obtained ESPI fringe patterns, respectively, and compare it with the original bilateral filtering method and the tangent least-squares fitting filtering method. The experimental results demonstrate that the proposed method performs impressively in speckle reduction and fringe edge preservation.
Professor
Supervisor of Doctorate Candidates
Supervisor of Master's Candidates
Gender:Male
Alma Mater:Dalian University of Technology (DUT)
Degree:Doctoral Degree
School/Department:State Key Laboratory of Industrial Equipment for Structral Analysis, Department of Engineering Mechanics
Discipline:Solid Mechanics. Applied and Experimental Mechanics. Engineering Mechanics. Mechanical Manufacture and Automation. Vehicle Engineering. Aerospace Mechanics and Engineering. mechanics of manufacturing process
Business Address:Room 321, Department of Engineering Mechanics
Contact Information:Tel.: 86 0411-84708406 Email: leizk@dlut.edu.cn
Open time:..
The Last Update Time:..