林秋华

个人信息Personal Information

教授

博士生导师

硕士生导师

性别:女

毕业院校:大连理工大学

学位:博士

所在单位:信息与通信工程学院

学科:信号与信息处理

联系方式:84706002-3326; 84706697

电子邮箱:qhlin@dlut.edu.cn

扫描关注

论文成果

当前位置: 中文主页 >> 科学研究 >> 论文成果

A Jacobi Generalized Orthogonal Joint Diagonalization Algorithm for Joint Blind Source Separation

点击次数:

论文类型:期刊论文

发表时间:2018-01-01

发表刊物:IEEE ACCESS

收录刊物:SCIE

卷号:6

页面范围:38464-38474

ISSN号:2169-3536

关键字:Joint blind source separation; joint diagonalization; Jacobi; Givens rotation

摘要:Joint blind source separation (J-BSS) has emerged as a data-driven technique for multi-set data fusion applications. In this paper, we propose a Jacobi generalized orthogonal joint diagonalization (GOJD) algorithm for J-BSS of multiset signals. By the use of second-order statistics, we can obtain multiple sets of auto-covariance and cross-covariance matrices from the multi-set signals, which together admit a GOJD formulation. For computing the GOJD, we propose a computationally efficient Jacobi algorithm, which uses a sequence of Givens rotations to simultaneously diagonalize the covariance matrices. In comparison with other GOJD algorithms, the proposed algorithm is shown to have fast convergence. Moreover, as the optimal Givens rotation matrix in each update is calculated in closed-form, this algorithm is computationally very efficient. In the application aspect, we have considered the scenario where different data sets in J-BSS may have different number of sources, among which there exist both similar components that are consistently present in multiple data sets, and diverse components that are uniquely present in each data set. We have shown how J-BSS based on the proposed GOJD algorithm can effectively extract both similar and diverse source components. Simulation results are given to show the nice performance of the proposed algorithm, with regards to both speed and accuracy, in comparison with other algorithms of similar type.