location: Current position: Prof. Tao Liu >> Scientific Research >> Paper Publications

Online Detection of Particle Agglomeration during Solution Crystallization by Microscopic Double-View Image Analysis

Hits:

Indexed by:期刊论文

Date of Publication:2017-10-04

Journal:INDUSTRIAL & ENGINEERING CHEMISTRY RESEARCH

Included Journals:SCIE、EI

Volume:56

Issue:39

Page Number:11257-11269

ISSN No.:0888-5885

Abstract:To detect the particle agglomeration degree for assessing crystal growth quality during a crystallization process, an in situ image analysis method is proposed based on a microscopic double-view imaging system. First, a fast image preprocessing approach is adopted for segmenting raw images taken simultaneously from two cameras installed at different angles, to reduce the influence from uneven illumination background and solution turbulence. By defining an index of the inner distance based curvature for different particle shapes, a preliminary sieving algorithm is then used to identify candidate agglomerates. By introducing two texture descriptors for pattern recognition, a feature matching algorithm is subsequently developed to recognize pseudoagglomerates in each pair of the double-view images. Finally, a fast algorithm is proposed to,count the number of recognized particles in these agglomerates, besides the unagglomerated particles. Experimental results from the potassium dihydrogen phosphate (KDP) crystallization process demonstrate good accuracy for recognizing pseudoagglomeration and counting the primary particles in these agglomerates by using the proposed method.

Pre One:Parameter estimation for batch crystallization processes using automatic differentiation

Next One:基于溶液温度差谱分析的ATR-FTIR原位测量方法