大连理工大学  登录  English 
马建伟
点赞:

教授   博士生导师   硕士生导师

性别: 男

毕业院校: 大连理工大学

学位: 博士

所在单位: 机械工程学院

学科: 机械电子工程. 机械制造及其自动化

办公地点: 机械工程学院知方楼5037室

联系方式: 18041185880;0411-84707876

电子邮箱: mjw2011@dlut.edu.cn

手机版

访问量:

开通时间: ..

最后更新时间: ..

当前位置: 中文主页 >> 科学研究 >> 论文成果
High-adaptable prediction method of flat-end milling force based on material properties for difficult-to-machine materials

点击次数:

论文类型: 期刊论文

发表时间: 2017-09-01

发表刊物: INTERNATIONAL JOURNAL OF ADVANCED MANUFACTURING TECHNOLOGY

收录刊物: SCIE、EI、Scopus

卷号: 92

期号: 1-4

页面范围: 1493-1506

ISSN号: 0268-3768

关键字: Cutting force modeling; Material property; Flat-end milling; High-speed milling; Difficult-to-machine material

摘要: Flat-end milling is an important processing method that has been widely used for complex parts machining in aerospace, biomedical and automotive industries. As the milling force is an important physical parameter to comprehensively reflect the milling process, its prediction is of great significance. However, most of the proposed cutting force prediction methods is applicable only to a fixed tool-material couple, the change of workpiece material will lead to the inapplicability of the model, and a completely new one has to be rebuilt from the beginning. As the high-speed milling shows obvious superiority in difficult-to-machine material machining and based on the differential and oblique cutting mechanisms, a high-adaptable method to predict the flat-end milling force is proposed in this study for difficult-to-machine materials in high-speed milling. The emphasis of this method is on the involvement of the workpiece material properties and the machining conditions as input elements with the combination of mechanistic approach and unified mechanics of cutting approach. Finally, the comparison between the predicted result and the experimental result confirms the effectiveness of the presented flat-end milling prediction method for different difficult-to-machine materials in high-speed milling based on the straight-line flank milling and the curve-line flank milling.

辽ICP备05001357号 地址:中国·辽宁省大连市甘井子区凌工路2号 邮编:116024
版权所有:大连理工大学