
教授 博士生导师 硕士生导师
性别:男
毕业院校:大连理工大学
学位:博士
所在单位:机械工程学院
学科:机械电子工程
机械制造及其自动化
办公地点:机械工程学院知方楼5037室
联系方式:
电子邮箱:
开通时间: ..
最后更新时间:..
点击次数:
发布时间:2019-03-12
论文类型:期刊论文
发表时间:2017-01-01
发表刊物:CHINESE JOURNAL OF MECHANICAL ENGINEERING
收录刊物:CSCD、EI、SCIE
卷号:30
期号:1
页面范围:37-45
ISSN号:1000-9345
关键字:trajectory error; dynamic error pre-compensation; continuous-path running; high-feed-speed machining; parts with varied curvature features
摘要:Parts with varied curvature features play increasingly critical roles in engineering, and are often machined under high-speed continuous-path running mode to ensure the machining efficiency. However, the continuous-path running trajectory error is significant during high-feed-speed machining, which seriously restricts the machining precision for such parts with varied curvature features. In order to reduce the continuous-path running trajectory error without sacrificing the machining efficiency, a pre-compensation method for the trajectory error is proposed. Based on the formation mechanism of the continuous-path running trajectory error analyzed, this error is estimated in advance by approximating the desired toolpath with spline curves. Then, an iterative error pre-compensation method is presented. By machining with the regenerated toolpath after pre-compensation instead of the uncompensated toolpath, the continuous-path running trajectory error can be effectively decreased without the reduction of the feed speed. To demonstrate the feasibility of the proposed pre-compensation method, a heart curve toolpath that possesses varied curvature features is employed. Experimental results indicate that compared with the uncompensated processing trajectory, the maximum and average machining errors for the pre-compensated processing trajectory are reduced by 67.19% and 82.30%, respectively. An easy to implement solution for high efficiency and high precision machining of the parts with varied curvature features is provided.