大连理工大学  登录  English 
黄明亮
点赞:

教授   博士生导师   硕士生导师

性别: 男

毕业院校: 大连理工大学

学位: 博士

所在单位: 材料科学与工程学院

学科: 材料学. 功能材料化学与化工. 化学工程

办公地点: 材料楼330办公室

联系方式: 0411-84706595

电子邮箱: huang@dlut.edu.cn

手机版

访问量:

开通时间: ..

最后更新时间: ..

当前位置: 黄明亮 >> 科学研究 >> 论文成果
Fabrication of broadband antireflection coatings using wavelength-indirect broadband optical monitoring

点击次数:

论文类型: 期刊论文

发表时间: 2018-01-01

发表刊物: OPTIK

收录刊物: SCIE、EI

卷号: 156

页面范围: 325-332

ISSN号: 0030-4026

关键字: Ion beam sputtering; Direct broadband optical monitoring; Broadband antireflection coating; Wavelength-indirect broadband optical monitoring

摘要: Multi-layer optical coatings with complex spectrum requirements, such as multi-band pass filters, notch filters, ultra-broadband antireflection coating and etc., whose working wavelength is out of monitoring wavelength range, are difficult to be fabricated using direct broadband optical monitoring (BBOM). In this paper, a broadband antireflection (AR) coating in the wavelength range from 1300 nm to 2000 nm at 45 incident was designed and deposited by dual ion beam sputtering (DIBS). Ta2O5 and SiO2 were chosen as high and low refractive index coating materials, respectively. The optimized coating structure contains 4 non-quarter-wave (QW) layers. In order to obtain high transmittance, the most important is to realize the thickness accurate control. Due to the limitation of the monitoring wavelength range, which is only from 450 nm to 1000 nm, a wavelength-indirect broadband optical monitoring strategy was successfully employed to control the layers thickness during the deposition process. At last, a good agreement between theoretical and measured transmittance is obtained. The maximum error (the first layer) is only about 5.3% and the minimum error (the third layer) is about -0.25% base on the results of reverse engineering analysis. (C) 2017 Elsevier GmbH. All rights reserved.

辽ICP备05001357号 地址:中国·辽宁省大连市甘井子区凌工路2号 邮编:116024
版权所有:大连理工大学