大连理工大学  登录  English 
黄明亮
点赞:

教授   博士生导师   硕士生导师

性别: 男

毕业院校: 大连理工大学

学位: 博士

所在单位: 材料科学与工程学院

学科: 材料学. 功能材料化学与化工. 化学工程

办公地点: 材料楼330办公室

联系方式: 0411-84706595

电子邮箱: huang@dlut.edu.cn

手机版

访问量:

开通时间: ..

最后更新时间: ..

当前位置: 黄明亮 >> 科学研究 >> 论文成果
In Situ Study on Current Density Distribution and Its Effect on Interfacial Reaction in a Soldering Process

点击次数:

论文类型: 期刊论文

发表时间: 2015-01-01

发表刊物: JOURNAL OF ELECTRONIC MATERIALS

收录刊物: SCIE、EI、Scopus

卷号: 44

期号: 1

页面范围: 467-474

ISSN号: 0361-5235

关键字: Soldering; electromigration; interfacial reaction; current density; in situ observation; FEM

摘要: The interfacial reaction in Cu/Sn/Cu solder joint during liquid-solid eletromigration (EM) was in situ studied using synchrotron radiation real-time imaging technology. The current density distribution in the solder joint was analyzed with the finite element method (FEM). The relationships among solder shape, current density distribution, Cu dissolution, and the formation and dissolution of interfacial intermetallic compound (IMC) were revealed. The current promoted dissolution of the cathode IMC and growth of the anode IMC and suppressed the dissolution of anode Cu. The change of interfacial IMC had little effect on the current density distribution; however, the dissolution of cathode Cu, which changed the solder shape, had a significant effect on the current density distribution. The dissolution of cathode Cu under forward current and cathode IMC under reverse current and the growth of anode IMC under forward current was faster where the current density was higher. The synchrotron radiation real-time imaging technology can not only in situ observe the change of solder shape, the dissolution and growth behavior of interfacial IMC and the dissolution behavior of substrate in a soldering process but also provide data needed for numerical simulation of current density distribution in a solder joint.

辽ICP备05001357号 地址:中国·辽宁省大连市甘井子区凌工路2号 邮编:116024
版权所有:大连理工大学