个人信息Personal Information
教授
博士生导师
硕士生导师
性别:男
毕业院校:天津大学
学位:博士
所在单位:信息与通信工程学院
学科:通信与信息系统. 信号与信息处理
办公地点:大连理工大学创新园大厦B510
联系方式:电子邮箱:whyu@dlut.edu.cn 办公电话:0411-84707675 移动电话:13842827170
电子邮箱:whyu@dlut.edu.cn
(ML)-L-3: Multi-modality mining for metric learning in person re-Identification
点击次数:
论文类型:期刊论文
发表时间:2018-04-01
发表刊物:PATTERN RECOGNITION
卷号:76
页面范围:650-661
ISSN号:0031-3203
关键字:Person re-identification; Multi-modality mining; Diagonal model; Metric learning
摘要:Learning a scene-specific distance metric from labeled data is critical for person re-identification. Most of the earlier works in this area aim to seek a linear transformation of the feature space such that relevant dimensions are emphasized while irrelevant ones are discarded in a global sense. However, when training data exhibit multi-modality transitions, the globally learned metric would deviate from the correct metrics learned from each modality. In this study, we propose a multi-modality mining approach for metric learning ((ML)-L-3) to automatically discover multiple modalities of illumination changes by exploring the shift-invariant property in log-chromaticity space, and then learn a sub-metric for each modality to maximally reduce the bias derived from metric learning model with global sense. The experiments on the challenging VIPeR dataset and the fusion dataset VIPeR&PRID 450S have validated the effectiveness of the proposed method with an average improvement of 2-7% over original baseline methods. (C) 2017 Elsevier Ltd. All rights reserved.