王洪玉

个人信息Personal Information

教授

博士生导师

硕士生导师

性别:男

毕业院校:天津大学

学位:博士

所在单位:信息与通信工程学院

学科:通信与信息系统. 信号与信息处理

办公地点:大连理工大学创新园大厦B510

联系方式:电子邮箱:whyu@dlut.edu.cn 办公电话:0411-84707675 移动电话:13842827170

电子邮箱:whyu@dlut.edu.cn

扫描关注

论文成果

当前位置: 中文主页 >> 科学研究 >> 论文成果

CLASSIFICATION OF HYPERSPECTRAL IMAGE BASED ON HYBRID NEURAL NETWORKS

点击次数:

论文类型:会议论文

发表时间:2018-01-01

收录刊物:CPCI-S

卷号:2018-July

页面范围:2643-2646

关键字:hyperspectral image (HSI); convolutional neural networks (CNN); feature learning; supervised classification

摘要:Convolutional neural networks (CNN), which are able to extract spatial semantic features, have achieved outstanding performance in many computer vision tasks. In this paper, hybrid neural networks (HNN) are proposed to extract both spatial and spectral features in the same deep networks. The proposed networks consist of different types of hidden layers, including spatial structure layer, spatial contextual layer, and spectral layer. All those layers work as organic networks to explore as much valuable information as possible from hyperspectral data for classification. Experimental results demonstrate competitive performance of the proposed approach over other state-of-the-art neural networks methods. Moreover, the proposed method is a new way to deal with multidimensional data with deep networks.