王洪玉

个人信息Personal Information

教授

博士生导师

硕士生导师

性别:男

毕业院校:天津大学

学位:博士

所在单位:信息与通信工程学院

学科:通信与信息系统. 信号与信息处理

办公地点:大连理工大学创新园大厦B510

联系方式:电子邮箱:whyu@dlut.edu.cn 办公电话:0411-84707675 移动电话:13842827170

电子邮箱:whyu@dlut.edu.cn

扫描关注

论文成果

当前位置: 中文主页 >> 科学研究 >> 论文成果

High-Resolution SAR Image Classification via Deep Convolutional Autoencoders

点击次数:

论文类型:期刊论文

发表时间:2015-11-01

发表刊物:IEEE GEOSCIENCE AND REMOTE SENSING LETTERS

收录刊物:SCIE、EI、Scopus

卷号:12

期号:11

页面范围:2351-2355

ISSN号:1545-598X

关键字:Deep convolutional autoencoders (DCAEs); supervised classification; synthetic aperture radar (SAR) image

摘要:Synthetic aperture radar (SAR) image classification is a hot topic in the interpretation of SAR images. However, the absence of effective feature representation and the presence of speckle noise in SAR images make classification difficult to handle. In order to overcome these problems, a deep convolutional autoencoder (DCAE) is proposed to extract features and conduct classification automatically. The deep network is composed of eight layers: a convolutional layer to extract texture features, a scale transformation layer to aggregate neighbor information, four layers based on sparse autoencoders to optimize features and classify, and last two layers for postprocessing. Compared with hand-crafted features, the DCAE network provides an automatic method to learn discriminative features from the image. A series of filters is designed as convolutional units to comprise the gray-level cooccurrence matrix and Gabor features together. Scale transformation is conducted to reduce the influence of the noise, which integrates the correlated neighbor pixels. Sparse autoencoders seek better representation of features to match the classifier, since training labels are added to fine-tune the parameters of the networks. Morphological smoothing removes the isolated points of the classification map. The whole network is designed ingeniously, and each part has a contribution to the classification accuracy. The experiments of TerraSAR-X image demonstrate that the DCAE network can extract efficient features and perform better classification result compared with some related algorithms.