个人信息Personal Information
教授
博士生导师
硕士生导师
性别:男
毕业院校:哈尔滨工业大学
学位:博士
所在单位:信息与通信工程学院
联系方式:http://peihuali.org
电子邮箱:peihuali@dlut.edu.cn
论文成果
当前位置: Official website ... >> 科学研究 >> 论文成果3Global Second-order Pooling Convolutional Networks
点击次数:
论文类型:会议论文
发表时间:2019-01-01
收录刊物:EI、CPCI-S
卷号:2019-June
页面范围:3019-3028
摘要:Deep Convolutional Networks (ConvNets) are fundamental to, besides large-scale visual recognition, a lot of vision tasks. As the primary goal of the ConvNets is to characterize complex boundaries of thousands of classes in a high-dimensional space, it is critical to learn higherorder representations for enhancing non-linear modeling capability. Recently, Global Second-order Pooling (GSoP), plugged at the end of networks, has attracted increasing attentions, achieving much better performance than classical, first-order networks in a variety of vision tasks. However, how to effectively introduce higher-order representation in earlier layers for improving non-linear capability of ConvNets is still an open problem. In this paper, we propose a novel network model introducing GSoP across from lower to higher layers for exploiting holistic image information throughout a network. Given an input 3D tensor outputted by some previous convolutional layer, we perform GSoP to obtain a covariance matrix which, after nonlinear transformation, is used for tensor scaling along channel dimension. Similarly, we can perform GSoP along spatial dimension for tensor scaling as well. In this way, we can make full use of the second-order statistics of the holistic image throughout a network. The proposed networks are thoroughly evaluated on large-scale hnageNet-1K, and experiments have shown that they outperform non-trivially the counterparts while achieving state-of-the-art results.