个人信息Personal Information
教授
博士生导师
硕士生导师
性别:男
毕业院校:大连理工大学
学位:博士
所在单位:力学与航空航天学院
学科:工程力学. 计算力学. 航空航天力学与工程
办公地点:综合实验I号楼 512
Topology optimization design of cast parts based on virtual temperature method
点击次数:
论文类型:期刊论文
发表时间:2018-01-01
发表刊物:COMPUTER-AIDED DESIGN
收录刊物:SCIE、EI
卷号:94
页面范围:28-40
ISSN号:0010-4485
关键字:Topology optimization; Virtual temperature method; Molding constraint; Parting direction; Finite volume method
摘要:Topology optimization has been widely used in industry for its powerful innovation ability to obtain the concept designs, which are generally unintuitive. But due to the limitation of the manufacturing processes or costs, some of these designs cannot be manufactured directly, so considering manufacturing process constraints in topology optimization becomes increasingly important. This paper presents a new method for structural topology optimization design considering the molding constraint which requires the absence of interior voids and undercuts in the cast parts. A virtual thermal diffusion problem is appropriately defined and a global thermal constraint is added into the optimization model to guarantee the cast-ability of the structural shape. The parting directions, unidirectional or multi-directional, are modeled by modifying heat dissipation boundaries and material properties. This method does not require an optimization process to start from a feasible initialization and can be applied to almost any topology optimization problems. Finite volume method is used to solve a steady-state heat equation and a parametric formulation of the conductive coefficient is given. Several examples of topology optimization of cast parts are provided to illustrate the validity and the effectiveness of the proposed method. (C) 2017 Elsevier Ltd. All rights reserved.