个人信息Personal Information
教授
博士生导师
硕士生导师
性别:男
毕业院校:大连理工大学
学位:博士
所在单位:力学与航空航天学院
学科:工程力学. 计算力学. 航空航天力学与工程
办公地点:综合实验I号楼 512
An identification method for enclosed voids restriction in manufacturability design for additive manufacturing structures
点击次数:
论文类型:期刊论文
发表时间:2015-01-01
发表刊物:机械工程前沿
收录刊物:CSCD、Scopus
卷号:10
期号:2
页面范围:126-137
ISSN号:2095-0233
摘要:Additive manufacturing (AM) technologies, such as selective laser sintering (SLS) and fused deposition modeling (FDM), have become the powerful tools for direct manufacturing of complex parts. This breakthrough in manufacturing technology makes the fabrication of new geometrical features and multiple materials possible. Past researches on designs and design methods often focused on how to obtain desired functional performance of the structures or parts, specific manufacturing capabilities as well as manufacturing constraints of AM were neglected. However, the inherent constraints in AM processes should be taken into account in design process. In this paper, the enclosed voids, one type of manufacturing constraints of AM, are investigated. In mathematics, enclosed voids restriction expressed as the solid structure is simplyconnected. We propose an equivalent description of simply-connected constraint for avoiding enclosed voids in structures, named as virtual temperature method (VTM). In this method, suppose that the voids in structure are filled with a virtual heating material with high heat conductivity and solid areas are filled with another virtual material with low heat conductivity. Once the enclosed voids exist in structure, the maximum temperature value of structure will be very high. Based upon this method, the simplyconnected constraint is equivalent to maximum temperature constraint. And this method can be easily used to formulate the simply-connected constraint in topology optimization. The effectiveness of this description method is illustrated by several examples. Based upon topology optimization, an example of 3D cantilever beam is used to illustrate the trade-off between manufacturability and functionality. Moreover, the three optimized structures are fabricated by FDM technology to indicate further the necessity of considering the simply-connected constraint in design phase for AM. ? 2015, Higher Education Press and Springer-Verlag Berlin Heidelberg.