个人信息Personal Information
教授
博士生导师
硕士生导师
性别:男
毕业院校:大连理工大学
学位:博士
所在单位:力学与航空航天学院
学科:工程力学. 计算力学. 航空航天力学与工程
办公地点:综合实验I号楼 512
MoM-based topology optimization method for planar metallic antenna design
点击次数:
论文类型:期刊论文
发表时间:2016-12-01
发表刊物:ACTA MECHANICA SINICA
收录刊物:SCIE、EI、ISTIC、CSCD、Scopus
卷号:32
期号:6
页面范围:1058-1064
ISSN号:0567-7718
关键字:Metallic antenna design; Topology optimization; Method of moments; Resistance sheet; Impedance boundary condition
摘要:The metallic antenna design problem can be treated as a problem to find the optimal distribution of conductive material in a certain domain. Although this problem is well suited for topology optimization method, the volumetric distribution of conductive material based on 3D finite element method (FEM) has been known to cause numerical bottlenecks such as the skin depth issue, meshed "air regions" and other numerical problems. In this paper a topology optimization method based on the method of moments (MoM) for configuration design of planar metallic antenna was proposed. The candidate structure of the planar metallic antenna was approximately considered as a resistance sheet with position-dependent impedance. In this way, the electromagnetic property of the antenna can be analyzed easily by using the MoM to solve the radiation problem of the resistance sheet in a finite domain. The topology of the antenna was depicted with the distribution of the impedance related to the design parameters or relative densities. The conductive material (metal) was assumed to have zero impedance, whereas the non-conductive material was simulated as a material with a finite but large enough impedance. The interpolation function of the impedance between conductive material and non-conductive material was taken as a tangential function. The design of planar metallic antenna was optimized for maximizing the efficiency at the target frequency. The results illustrated the effectiveness of the method.