刘书田

个人信息Personal Information

教授

博士生导师

硕士生导师

性别:男

毕业院校:大连理工大学

学位:博士

所在单位:力学与航空航天学院

学科:工程力学. 计算力学. 航空航天力学与工程

办公地点:综合实验I号楼 512

扫描关注

论文成果

当前位置: 刘书田 >> 科学研究 >> 论文成果

A Gradient-Based Optimization Method for the Design of Layered Phononic Band-Gap Materials

点击次数:

论文类型:期刊论文

发表时间:2016-08-01

发表刊物:ACTA MECHANICA SOLIDA SINICA

收录刊物:SCIE、EI

卷号:29

期号:4

页面范围:429-443

ISSN号:0894-9166

关键字:optimization; band gap; gradient-based optimization; two-step optimization approach

摘要:Phononic materials with specific band-gap characteristics at desired frequency ranges are in great demand for vibration and noise isolation, elastic wave filters, and acoustic devices. The attenuation coefficient curve depicts both the frequency range of band gap and the attenuation of elastic wave, where the frequency ranges corresponding to the none-zero attenuation coefficients are band gaps. Therefore, the band-gap characteristics can be achieved through maximizing the attenuation coefficient at the corresponding frequency or within the corresponding frequency range. Because the attenuation coefficient curve is not smooth in the frequency domain, the gradient-based optimization methods cannot be directly used in the design optimization of phononic band-gap materials to achieve the maximum attenuation within the desired frequency range. To overcome this difficulty, the objective of maximizing the attenuation coefficient is transformed into maximizing its Cosine, and in this way, the objective function is smoothed and becomes differentiable. Based on this objective function, a novel gradient-based optimization approach is proposed to open the band gap at a prescribed frequency range and to further maximize the attenuation efficiency of the elastic wave at a specific frequency or within a prescribed frequency range. Numerical results demonstrate the effectiveness of the proposed gradient-based optimization method for enhancing the wave attenuation properties.