个人信息Personal Information
教授
博士生导师
硕士生导师
性别:男
毕业院校:大连理工大学
学位:博士
所在单位:力学与航空航天学院
学科:工程力学. 计算力学. 航空航天力学与工程
办公地点:综合实验I号楼 512
面向变厚度柔性轧制工艺的帽型梁横向冲击吸能优化设计
点击次数:
发表时间:2019-01-01
发表刊物:力学学报
卷号:51
期号:2
页面范围:462-472
ISSN号:0459-1879
摘要:As one of the main thin-walled energy absorption structure in automobile, the top-hat beam draws great attention and its performance improvement is a concerning issue. Research indicates that the energy absorption performance of thin-walled structures can be improved by the wall thickness optimization. However, complicated thickness distribution would cause manufacturing difficulties. Thus, it is urgent to develop a design optimization method of structural thickness distribution based on specific manufactory process technology. In this paper, a design optimization method is proposed for maximizing the energy absorption of top-hat beam under transverse crash manufactured by variable gauge rolling technology. This top-hat beam is made of tailor rolled blanks, and can be classified as uniform thickness sections and transition sections. Through adjusting the length and thickness of the uniform section, and the description of the transition section, the performance of the structure can be optimized. To find the optimal structure parameter, we use the hybrid cellular automata to determine the optimization direction. To meet the variable gauge rolling constraint, the structure is filtered in the iteration. Based on this method, we studied an example of top-hat beam and found its optimized section length, thickness and transition description, which shows the effectiveness of this method. ? 2019, Chinese Journal of Theoretical and Applied Mechanics Press. All right reserved.
备注:新增回溯数据