个人信息Personal Information
教授
博士生导师
硕士生导师
性别:男
毕业院校:大连理工大学
学位:博士
所在单位:力学与航空航天学院
学科:工程力学. 计算力学. 航空航天力学与工程
办公地点:综合实验I号楼 512
A topology optimization method for design of small GPR antennas
点击次数:
论文类型:期刊论文
发表时间:2014-12-01
发表刊物:STRUCTURAL AND MULTIDISCIPLINARY OPTIMIZATION
收录刊物:SCIE、EI、Scopus
卷号:50
期号:6
页面范围:1165-1174
ISSN号:1615-147X
关键字:Planar bow-tie antenna; MOM; Reflection coefficient; Topology optimization; Center operating frequency
摘要:This paper proposes a design method for miniaturized planar bow-tie antennas typically used in Ground Penetrating Radar (GPR) based on topology optimization. To reduce the center operating frequency of the miniaturized antenna, a design strategy is given to determine a reasonable distribution of conductive material within a given domain. The skin-depth issue in the FEM-model is avoided by using the method of moments (MOM) and the degree of freedom is reduced by not discretizing the free-space box domain which can greatly improve the computational efficiency. Additionally, a novel method is proposed to model a non-conductive material by imposing infinite impedance through an exponential material interpolation function. Based on a series of numerical results, three technical problems in the electromagnetic structural topology optimization technique are identified, and a volume-preserving Heaviside density filter is introduced to guide the optimal result tending to a 0-1 differentiation. Numerical examples show that the proposed optimization method can reduce the center operating frequency of the antenna significantly, thus the effectiveness of our optimization method is verified.