NAV
中文 DALIAN UNIVERSITY OF TECHNOLOGYLogin
Teaching and Research Section of Analysis
Paper
Current position: Home >> Research Results >> Paper
The Reducibility of Truncated Toeplitz Operators
Release time:2020-08-13 Hits:
Indexed by: Journal Papers
First Author: Li, Yufei
Correspondence Author: Yang, YX (corresponding author), Dalian Univ Technol, Dept Math Sci, Dalian 116024, Liaoning, Peoples R China.
Co-author: Yang, Yixin,Lu, Yufeng
Date of Publication: 2020-07-24
Journal: COMPLEX ANALYSIS AND OPERATOR THEORY
Included Journals: SCIE
Document Type: J
Volume: 14
Issue: 6
ISSN No.: 1661-8254
Key Words: Reducibility; Truncated Toeplitz operator; Model space
Abstract: Let T be a contraction on the Hilbert space H and S a minimal isometric dilation of T. In this paper, we show that every projection in {T}' can be extended to a projection in {S}'. Using this result, a sufficient condition for reducibility of A(Bn)theta, where B-n is a finite Blaschke product with order n, is given. In particular, we determine when A(Bn)(theta) is reducible in two special cases. One case is that n = 2, 3 and the other case is that B-n = z(n) (n is an element of N) and theta is a singular inner function.
Translation or Not: no