大连理工大学  登录  English 
刘巍
点赞:

教授   博士生导师   硕士生导师

主要任职: 机械工程学院院长、党委副书记

性别: 男

毕业院校: 大连理工大学

学位: 博士

所在单位: 机械工程学院

学科: 机械电子工程. 测试计量技术及仪器. 精密仪器及机械

办公地点: 辽宁省大连市大连理工大学机械工程学院知方楼5027

联系方式: 辽宁省大连市大连理工大学机械工程学院,116023

电子邮箱: lw2007@dlut.edu.cn

手机版

访问量:

开通时间: ..

最后更新时间: ..

A hybrid model using supporting vector machine and multi-objective genetic algorithm for processing parameters optimization in micro-EDM

点击次数:

论文类型: 期刊论文

发表时间: 2010-11-01

发表刊物: INTERNATIONAL JOURNAL OF ADVANCED MANUFACTURING TECHNOLOGY

收录刊物: SCIE、EI、Scopus

卷号: 51

期号: 5-8

页面范围: 575-586

ISSN号: 0268-3768

关键字: Micro-EDM; SVM; GA; Multi-objective optimization

摘要: In micro-electrical discharge machining (EDM), processing parameters greatly affect processing efficiency and stability. However, the complexity of micro-EDM makes it difficult to determine optimal parameters for good processing performance. The important output objectives are processing time (PT) and electrode wear (EW). Since these parameters influence the output objectives in quite an opposite way, it is not easy to find an optimized combination of these processing parameters which make both PT and EW minimum. To solve this problem, supporting vector machine is adopted to establish a micro-EDM process model based on the orthogonal test. A new multi-objective optimization genetic algorithm (GA) based on the idea of non-dominated sorting is proposed to optimize the processing parameters. Experimental results demonstrate that the proposed multi-objective GA method is precise and effective in obtaining Pareto-optimal solutions of parameter settings. The optimized parameter combinations can greatly reduce PT while making EW relatively small. Therefore, the proposed method is suitable for parameter optimization of micro-EDM and can also enhance the efficiency and stability of the process.

辽ICP备05001357号 地址:中国·辽宁省大连市甘井子区凌工路2号 邮编:116024
版权所有:大连理工大学