![]() |
个人信息Personal Information
教授
博士生导师
硕士生导师
主要任职:Professor
性别:男
毕业院校:日本京都大学
学位:博士
所在单位:软件学院、国际信息与软件学院
学科:计算机软件与理论. 运筹学与控制论
联系方式:hanxin@dlut.edu.cn
Graph-based semi-supervised learning with adaptive similarity estimation
点击次数:
论文类型:会议论文
发表时间:2010-12-14
收录刊物:EI、Scopus
页面范围:1181-1186
摘要:Graph-based semi-supervised learning algorithms have attracted a lot of attention. Constructing a good graph is playing an essential role for all these algorithms. Many existing graph construction methods(e.g. Gaussian Kernel etc.) require user input parameter, which is hard to configure manually. In this paper, we propose a parameter-free similarity measure Adaptive Similarity Estimation (ASE), which constructs the graph by adaptively optimizing linear combination of its neighbors. Experimental results show the effectiveness of our proposed method. ? 2010 IEEE.