个人信息Personal Information
教授
博士生导师
硕士生导师
主要任职:软件学院、大连理工大学-立命馆大学国际信息与软件学院院长、党委副书记
性别:男
毕业院校:西安交通大学
学位:博士
所在单位:软件学院、国际信息与软件学院
学科:软件工程. 计算数学
电子邮箱:xin.fan@dlut.edu.cn
Two-Layer Gaussian Process Regression With Example Selection for Image Dehazing
点击次数:
论文类型:期刊论文
发表时间:2017-12-01
发表刊物:IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY
收录刊物:SCIE、EI
卷号:27
期号:12
页面范围:2505-2517
ISSN号:1051-8215
关键字:Example selection; Gaussian process regression (GPR); image dehazing
摘要:Researchers have devoted great efforts to image dehazing with prior assumptions in the past decade. Recently developed example-based approaches typically lack elegant models for the hazy process and meanwhile demand synthetic hazy images by manual selection. The priors from observations, and those trained from synthetic images cannot always reflect true structural information of natural images in practice. In this paper, we present a learning model for haze removal by using two-layer Gaussian process regression (GPR). By using training examples, the two-layer GPR establishes a direct relationship from the input image to the depth-dependent transmission, and learns local image priors to further improve the estimation. We also provide a systematic scheme to automatically collect suitable training pairs, which works for both simulated examples and images of natural scenes. Both qualitative and quantitative comparisons on real-world and synthetic hazy images demonstrate the effectiveness of the proposed approach, especially for white or bright objects and heavy haze regions in which traditional methods may fail.