樊鑫

个人信息Personal Information

教授

博士生导师

硕士生导师

主要任职:软件学院、大连理工大学-立命馆大学国际信息与软件学院院长、党委副书记

性别:男

毕业院校:西安交通大学

学位:博士

所在单位:软件学院、国际信息与软件学院

学科:软件工程. 计算数学

电子邮箱:xin.fan@dlut.edu.cn

扫描关注

论文成果

当前位置: 樊鑫的主页 >> 科学研究 >> 论文成果

Deep Proximal Unrolling: Algorithmic Framework, Convergence Analysis and Applications

点击次数:

论文类型:期刊论文

发表时间:2019-10-01

发表刊物:IEEE TRANSACTIONS ON IMAGE PROCESSING

收录刊物:SCIE

卷号:28

期号:10

页面范围:5013-5026

ISSN号:1057-7149

关键字:Deep propagation; proximal algorithm; global convergence; low-level computer vision

摘要:Deep learning models have gained great success in many real-world applications. However, most existing networks are typically designed in heuristic manners. thus these approaches lack rigorous mathematical derivations and clear interpretations. Several recent studies try to build deep models by unrolling a particular optimization model that involves task information. Unfortunately, due to the dynamic nature of network parameters, their resultant deep propagations do not possess the nice convergence property as the original optimization scheme does. In this work, we develop a generic paradigm to unroll nonconvex optimization for deep model design. Different from most existing frameworks, which just replace the iterations by network architectures, we prove in theory that the propagation generated by our proximally unrolled deep model can globally converge to the critical-point of the original optimization model. Moreover, even if the task information is only partially available (e.g., no prior regularization), we can still train convergent deep propagations. We also extend these theoretical investigations on the more general multi-block models and thus a lot of real-world applications can be successfully handled by the proposed framework. Finally, we conduct experiments on various low-level vision tasks (i.e., non-blind deconvolution, dehazing, and low-light image enhancement) and demonstrate the superiority of our proposed framework, compared with existing state-of-the-art approaches.