樊鑫

个人信息Personal Information

教授

博士生导师

硕士生导师

主要任职:软件学院、大连理工大学-立命馆大学国际信息与软件学院院长、党委副书记

性别:男

毕业院校:西安交通大学

学位:博士

所在单位:软件学院、国际信息与软件学院

学科:软件工程. 计算数学

电子邮箱:xin.fan@dlut.edu.cn

扫描关注

论文成果

当前位置: 樊鑫的主页 >> 科学研究 >> 论文成果

Fiducial Facial Point Extraction Using a Novel Projective Invariant

点击次数:

论文类型:期刊论文

发表时间:2015-03-01

发表刊物:IEEE TRANSACTIONS ON IMAGE PROCESSING

收录刊物:SCIE、EI、Scopus

卷号:24

期号:3

页面范围:1164-1177

ISSN号:1057-7149

关键字:Fiducial facial point extraction; pose changes; projective invariant; characteristic number

摘要:Automatic extraction of fiducial facial points is one of the key steps to face tracking, recognition, and animation. Great facial variations, especially pose or viewpoint changes, typically degrade the performance of classical methods. Recent learning or regression-based approaches highly rely on the availability of a training set that covers facial variations as wide as possible. In this paper, we introduce and extend a novel projective invariant, named the characteristic number (CN), which unifies the collinearity, cross ratio, and geometrical characteristics given by more (6) points. We derive strong shape priors from CN statistics on a moderate size (515) of frontal upright faces in order to characterize the intrinsic geometries shared by human faces. We combine these shape priors with simple appearance based constraints, e.g., texture, edge, and corner, into a quadratic optimization. Thereafter, the solution to facial point extraction can be found by the standard gradient descent. The inclusion of these shape priors renders the robustness to pose changes owing to their invariance to projective transformations. Extensive experiments on the Labeled Faces in the Wild, Labeled Face Parts in the Wild and Helen database, and cross-set faces with various changes demonstrate the effectiveness of the CN-based shape priors compared with the state of the art.