个人信息Personal Information
教授
博士生导师
硕士生导师
性别:男
毕业院校:大连理工大学
学位:博士
所在单位:力学与航空航天学院
学科:工程力学. 计算力学. 结构工程. 动力学与控制
办公地点:力学楼506 (Mechanics Building 506)
联系方式:yangdx@dlut.edu.cn
电子邮箱:yangdx@dlut.edu.cn
面向工程全局优化的混沌优化算法研究进展
点击次数:
论文类型:期刊论文
发表时间:2016-06-15
发表刊物:计算力学学报
收录刊物:PKU、ISTIC、CSCD
卷号:33
期号:3
页面范围:269-286
ISSN号:1007-4708
关键字:全局优化;混沌优化算法;混沌序列;混沌神经网络;混沌搜索;混沌分形优化
摘要:近年来,基于混沌的初值敏感性、伪随机性、遍历性以及自相似分形等非线性动力学特性所发展的混沌优化方法,是一种有潜力的工程全局优化新工具,已广泛应用于科学与工程技术的各学科领域。根据混沌优化方法的发展历程,以算法基本思想和工程应用研究状况为重点,评述了混沌神经网络优化方法、第一类混合混沌优化算法(基于混沌搜索)、第二类混合混沌优化算法(混沌序列代替随机序列)以及混沌分形优化四种主要混沌优化算法。混沌映射最早被引入神经网络,发展了混沌神经网络优化方法,可解决复杂的组合优化等全局优化问题。遗传算法及粒子群等启发式随机算法虽具全局搜索能力,但易出现早熟并陷入局部最优。然后,出现了混沌搜索的概念,研究者将其嵌入启发式算法建立了第一类混合混沌优化算法,可有效克服原启发式算法早熟收敛的缺点。随后,利用混沌映射产生的混沌序列代替启发式算法中的随机参数形成了第二类混合混沌优化算法。混合混沌优化算法有益于实现快速全局收敛和提高计算精度。最后,利用混沌分形特性,从分形理论出发提出一类新颖的混沌分形优化算法,可搜索到优化问题的所有全局最优解。此外,对混沌优化算法研究的几个发展方向进行了展望,诸如加强混沌优化算法的参数设计、处理大规模优化、多目标优化问题以及使用代理模型等。