张明媛

个人信息Personal Information

副教授

博士生导师

硕士生导师

任职 : 建设管理系 系主任

性别:女

毕业院校:大连理工大学

学位:博士

所在单位:建设管理系

学科:工程管理

办公地点:综合实验3号楼508室

电子邮箱:myzhang@dlut.edu.cn

扫描关注

论文成果

当前位置: 中文主页 >> 科学研究 >> 论文成果

基于深度学习的建筑工人安全帽佩戴识别研究

点击次数:

论文类型:期刊论文

发表时间:2019-04-25

发表刊物:安全与环境学报

收录刊物:PKU

卷号:19

期号:2

页面范围:535-541

ISSN号:1009-6094

关键字:安全工程;施工管理;安全帽识别;深度学习;Faster RCNN

摘要:建筑工人头部伤害是造成建筑伤亡事故的重要原因.佩戴安全帽是防止建筑工人发生脑部外伤事故的有效措施,而在实际工作中工人未佩戴安全帽的不安全行为时有发生.因此,对施工现场建筑工人佩戴安全帽自动实时检测进行探究,将为深入认知和主动预防安全事故提供新的视角.然而,传统的施工现场具有安全管理水平低下、管理范围小、主要依靠安全管理人员的主观监测并且时效性差、不能全程监控等一系列问题.针对上述现状,提出了一种基于Tensofflow框架,具有高精度、快速等特性的Faster RCNN方法,实时监测工人安全帽佩戴状况.为评估模型性能,收集了6 000张图像用于模型的训练与测试,结果表明,该模型识别工人安全监测中佩戴安全帽工人的平均精度达到90.91%,召回率达到89.19%;识别未佩戴安全帽工人的精度达到88.32%,召回率达到85.08%.同时,针对工人未佩戴安全帽而进入施工现场的违规行为,通过施工现场入口处监控摄像头截取视频流图像帧,设置检验试验,验证了本方法在施工现场实际应用的有效性.