![]() |
个人信息Personal Information
副教授
博士生导师
硕士生导师
性别:男
毕业院校:大连理工大学
学位:博士
所在单位:化工学院
办公地点:大连理工大学西部校区化工实验楼D-307
联系方式:E-mail:lanzhong@dlut.edu.cn Phone:18940953235
电子邮箱:lanzhong@dlut.edu.cn
Heterogeneous nucleation capability of conical microstructures for water droplets
点击次数:
论文类型:期刊论文
发表时间:2015-01-01
发表刊物:RSC ADVANCES
收录刊物:SCIE、EI、Scopus
卷号:5
期号:2
页面范围:812-818
ISSN号:2046-2069
摘要:The presence of microstructures on a substrate has a great effect on the heterogeneous nucleation of water droplets. A circular conical apex and a cavity are adopted as the physical model to represent the typical defects which exist widely on substrates, and classic nucleation theory is used to quantitatively analyze the nucleation capability of different microstructures at different condensation conditions. The results indicate that conical cavities with narrower cone angles can reduce the nucleation free energy barrier as compared with apexes and a planar substrate, yielding a relatively higher nucleation capability. With the vapor pressure and supersaturation increasing, the nucleation rate increases rapidly, and some of the cavities that are originally not preferred for nucleation gradually translate into active nucleation sites. Consequently, the activated nucleation sites are finite for practical substrates under certain nucleation conditions, and the nucleation sites number density can be affected by the condensation conditions and the distribution of micro cavities on the substrate. The analysis also indicated that it is possible to realize spatial control of nucleation sites by the construction of micro cavities, and the nucleation sites number density can be intensified by increasing the amount of micro cavities on the substrate.