![]() |
个人信息Personal Information
副教授
博士生导师
硕士生导师
性别:男
毕业院校:大连理工大学
学位:博士
所在单位:化工学院
办公地点:大连理工大学西部校区化工实验楼D-307
联系方式:E-mail:lanzhong@dlut.edu.cn Phone:18940953235
电子邮箱:lanzhong@dlut.edu.cn
Experimental Study of Nucleate Boiling Heat Transfer Using Enhanced Space-Confined Structures
点击次数:
论文类型:期刊论文
发表时间:2012-06-01
发表刊物:JOURNAL OF HEAT TRANSFER-TRANSACTIONS OF THE ASME
收录刊物:SCIE、EI、Scopus
卷号:134
期号:6
ISSN号:0022-1481
关键字:nucleate boiling; confined space; enhanced structure; heat transfer enhancement
摘要:For narrow space boiling, it is difficult to release bubbles from the narrow space, especially on a large-area surface. To solve this problem, a new structure is designed in the present paper. An experimental study of pool boiling on the novel copper enhanced structure, with the separate ordinary confined spaces and the open channels between them, was conducted with water and ethanol. High-speed visualizations are performed to elucidate the bubble flow. The results show that the boiling performance of both water and ethanol can be enhanced effectively. The visualizations indicated that most active nucleation sites emerged in the confined channels and rarely appeared at the bare surfaces not covered by enhanced structures even at high superheat. The bubble diameter, the bubble departure frequency, and the numbers of nucleation sites are obtained using statistical methods. The results suggest that the magnitudes of bubble diameter of water are almost the same on the smooth and enhanced surfaces. The amount of nucleation sites on the enhanced surfaces is remarkably increased, indicating its key role in the boiling enhancement of water. The bubble departure frequency is increased on one of the enhanced surfaces while not increased on another, showing that it is also a significant factor for heat transfer enhancement under certain conditions. While for ethanol, all the three parameters are increased on the enhanced surfaces. [DOI: 10.1115/1.4006018]