location: Current position: Home >> Scientific Research >> Paper Publications

Investigation of factors influencing the catalytic performance of CO oxidation over Au-Ag/SBA-15 catalyst

Hits:

Indexed by:期刊论文

Date of Publication:2013-07-15

Journal:APPLIED SURFACE SCIENCE

Included Journals:SCIE、EI

Volume:277

Page Number:293-301

ISSN No.:0169-4332

Key Words:Au-Ag; Low metal loading; CO oxidation; SBA-15; Alloy

Abstract:Au-Ag bimetallic nanoparticles (NPs) supported on SBA-15 have been prepared by a two-step method and characterized by ICP-AES, XRD, UV-vis, TG-DTG, XPS and TEM. Au-Ag/SBA-15 bimetallic catalyst with a low metal loading of 1.26 wt.% exhibited high catalytic performance for low temperature CO oxidation, which was governed by Au/Ag molar ratio and the pretreatment conditions (calcination and reduction). The Au-Ag/SBA-15 with an actual Au/Ag molar ratio of 5.4/1 showed the highest catalytic activity for CO oxidation (T-100 = 20 degrees C), and it has also been found that catalytic activity was strongly related with the calcination and reduction temperature of the bimetallic catalyst. The initial CO conversion was increased with the calcination temperature and then decreased above 500 degrees C. It was necessary to activate the bimetallic catalyst and completely remove the amine groups in the catalyst at 500 degrees C for the high activity of CO oxidation. The severe sintering of Au-Ag bimetallic NPs at 700 degrees C resulted in an obvious loss of activity. H-2 reduction following the calcination played an important role in the enhancement of catalytic activity for CO oxidation. The best catalytic performance was obtained in the activation temperature range of 500-600 degrees C, and then decreased with a further increase of reduction temperature to 700 degrees C. The reduction treatment induced the surface redistribution of gold and silver. The formation of a closer bulk value of the surface Au/Ag molar ratio after reduction at 500-600 degrees C and a more random alloy resulted in the improvement in activity. However, the surface enrichment of Ag NPs and the severe aggregation of particles after high temperature reduction (>600 degrees C) caused the activity decrease. (c) 2013 Elsevier B.V. All rights reserved.

Pre One:Support effects on the structure and catalytic activity of mesoporous Ag/CeO2 catalysts for CO oxidation

Next One:The Formation Mechanism of Ag/SBA-15 Nanocomposites Prepared via In-Situ pH-Adjusting Method