曲振平

个人信息Personal Information

教授

博士生导师

硕士生导师

性别:女

毕业院校:中科院大连化学物理研究所

学位:博士

所在单位:环境学院

学科:环境科学与工程. 环境工程. 环境科学

办公地点:环境楼B511

电子邮箱:quzhenping@dlut.edu.cn

扫描关注

论文成果

当前位置: 中文主页 >> 科学研究 >> 论文成果

Investigation on Cu2O Surface Reconstruction and Catalytic Performance of NH3-SCO by Experimental and DFT Studies

点击次数:

论文类型:期刊论文

发表时间:2020-04-27

发表刊物:ACS APPLIED ENERGY MATERIALS

收录刊物:SCIE

卷号:3

期号:4

页面范围:3465-3476

ISSN号:2574-0962

关键字:reconstruction; Cu2O-CuO mixed oxide; DFT calculations; oxygen dissociated adsorption; bidentate nitrate

摘要:Cubic cuprous oxide is applied in the selective catalytic oxidation of ammonia to nitrogen (NH3-SCO) to investigate the effect of structure evolution on catalytic performance. Different structures (Cu2O, Cu2O-CuO, and CuO) that formed progressively during the reconstruction process with time are discovered by X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), and other characterization methods. The optimal CuO-Cu2O exhibits the best catalytic performance, which has T-100% = 210 degrees C and above 80% N-2 selectivity. Combining the experimental method and the density functional theory (DFT), the oxygen molecule is adsorbed in the form of a stable molecular state on Cu2O particles, while the dissociative adsorption of O-2 occurs over the mixed CuO-Cu2O and pure CuO phases. It is found that O-2 is more likely to be dissociated and activated on CuO-Cu2O with E-ads = -7.15 eV. There are three kinds of intermediate species (monodentate, bidentate, and bridging nitrate) observed. The formation of key bidentate nitrate species facilitates NH3 conversion and N-2 formation, but the other intermediate species have a negative effect on NH3 oxidation.