个人信息Personal Information
教授
博士生导师
硕士生导师
性别:男
毕业院校:大连理工大学
学位:博士
所在单位:数学科学学院
学科:计算数学
办公地点:创新园大厦(海山楼)B1313
联系方式:84708351-8093
电子邮箱:zxsu@dlut.edu.cn
VISUAL TRACKING VIA ORTHOGONAL SPARSE CODING
点击次数:
论文类型:会议论文
发表时间:2015-09-27
收录刊物:EI、CPCI-S、SCIE、Scopus
卷号:2015-December
页面范围:3817-3821
关键字:Visual tracking; particle filter; orthogonal dictionary; sparse coding; l(0) regularization
摘要:In this paper, we incorporate sparse coding and orthogonal dictionary learning into a unified framework, named orthogonal sparse coding (OSC), for robust visual tracking. Different from previous tracking methods, which often use redundant dictionaries, OSC enforces an orthogonality constraint in the dictionary learning step to adaptively capture the structures of the video sequences. Moreover, a l(0) norm regularizer is introduced in OSC formulation to address the severe noise problems, illumination changes, and occlusions in real world videos. As a nontrivial byproduct, we develop an efficient numerical solver to address the optimization issues of our OSC model. Experimental results on various challenging video sequences show that the proposed method achieves better performance both on accuracy and speed compared to proposed state-of-the-art methods.